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Abstract

Background radiation estimation plays an important role in the anomalous radiation detection. Accurately estimat-
ing temporal and spatial fluctuations of background radiation helps to reduce the false alarm rate and improve the
estimation accuracy of anomalous source location. It has been long observed that background radiation is positively
correlated with precipitation due to the scavenging effect of rain and snow. This paper presents the usage of recurrent
neural networks to predict the background radiation level based on past weather and radiation data. Two datasets are
prepared with different noise levels. Experiment results show that recurrent neural networks outperform the traditional
moving average algorithm on the high noise dataset; recurrent neural networks perform as well as the moving average
algorithm on the low noise dataset.
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1. Introduction

Anomalous radioactive source detection plays a ma-
jor role in national security. This task includes iden-
tifying illicit movement of special nuclear materials
(SNM), locating unusual radioactive events, and esti-
mating the intensity of radioactive sources to name a
few. Different algorithms, such as maximum likelihood
estimation based algorithms [1, 2, 3, 4] and Bayesian
estimation based algorithms [5, 6], have been developed
to estimate the location and intensity of anomalous ra-
dioactive sources. Besides the anomalous radioactive
sources, there exist naturally occurring radioactive ma-
terials (NORM) in the environment, and those NORM
form the background radiation. The background radia-
tion is assumed to be known in above anomalous source
detection algorithms. To accurately detect and locate
anomalous sources, a good understanding and estima-
tion of background radiation is required by those algo-
rithms.

The background radiation fluctuates with time. Stud-
ies have long observed that precipitation is positively
correlated with the elevation of background radiation
[7, 8]. During rainfall, background radiation increases
mostly due to the scavenging effect of rain and snow that

∗Corresponding author
Email address: zliu86@illinois.edu (Zheng Liu)

brings radioactive materials in the upper air down to the
ground [9]. 214Pb and 214Bi are major contributors to the
elevated background radiation, and the radiation fluctu-
ation peaks usually have a duration of several hours ac-
cording to those isotope’s half life[9, 8]. Stationary radi-
ation detectors are used to monitor the background radi-
ation, and a moving average algorithm is widely used to
estimate the current background radiation from previous
radiation measurements [10]. However, no weather data
are utilized in the moving average method. This paper
explores the usage of weather measurements together
with radiation measurements to improve the estimation
accuracy of the background radiation.

In this paper, recurrent neural networks (RNN)
are used to predict background radiation levels based
on previous background radiation measurements and
weather data. Prediction results are compared between
the RNN methods and the moving average method.

2. Data collection methodology

Raw data were collected by a stationary radiation de-
tector and a weather station. The stationary detector
was a 2X4X16 in3 NaI(Tl) detector. It recorded back-
ground radiation spectra once every three seconds, and
each of the measurement lasted for one second. Un-
der different weather conditions, background radiation
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measurements have diverse shapes in spectra, as well
as different total radiation count rates (known as gross
count rate). This study focuses on the gross count rate of
background radiation. For each measurement, the spec-
trum was summed and then divided by the measurement
time to obtain the gross count rate. The unit of gross
count rate is count per second (cps). This stationary de-
tector was placed on the roof of a one-story building. A
weather station was setup near the stationary detector. It
collected temperature, humidity, atmospheric pressure,
precipitation, wind speed and wind direction in every
ten minutes.

Figure 1 shows a nine-day example of background
radiation and weather measurements. The plot in the
first row of Figure 1 shows background radiation mea-
surements versus time. The dots in this plot indicate
the raw measurements, while the line denotes the ra-
diation mean value within a centered-10min time win-
dow. Because radiation gross counts intrinsically fol-
low the Poisson distribution, those counts always fluctu-
ate around their mean value. The plots in the following
rows in Figure 1 show various weather features versus
time. Several rain events occurred during this period. In
each of the rain events, the background radiation can be
seen to be significantly elevated.

The raw dataset consists of measurements from Dec.
21, 2016 to April 06, 2017. The whole dataset’s cor-
relation matrix is shown in Figure 2. Temperature, hu-
midity, air pressure, and precipitation were more cor-
related with background radiation than wind direction
and wind speed. One possible explanation is that the
fluctuation of background radiation is closely related to
rains. During rains, temperature, humidity, atmospheric
pressure, and precipitation level change significantly,
whereas wind direction and speed are indirectly asso-
ciated with the occurrence of rains. Based on the low
correlation with background radiation, wind speed and
wind direction were eliminated from the model.

3. Methods

3.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) are designed to
capture temporal contextual information along time-
series data. Different from traditional feed-forward
neural networks (FFNNs), RNNs have cycles in their
structure that feed output from previous time steps into
the current time step as input. This structure enables
RNNs to model complex temporal contextual infor-
mation along time series data. The back-propagation
through time (BPTT) technique is usually used to train

Figure 1: Background radiation and weather measurements for nine
days. The top plot shows the radiation measurements (dots) and the
mean radiation value (line). The subsequent plots show different
weather features as they vary with time.

RNNs [11]. However, it is difficult to use BPTT to
train traditional RNNs because of the gradient vanish-
ing and exploding problem [12]. Errors from later time
steps are difficult to propagate back to previous time
steps and make proper updates of network parameters.
To address this problem, the long short-term memory
(LSTM) unit has been developed [13, 14]. The LSTM
has a basic structure called a memory cell to remember
and propagate unit outputs between different time steps
explicitly. The LSTM memory cell uses cell states to
remember temporal contextual information. It also has
an input gate, an output gate, and a forget gate to con-
trol information flow between different time steps. In
this study, LSTM neural networks were used to predict
background radiation from time-series weather and ra-
diation data.

Raw data of background radiation and weather mea-
surements were first pre-processed before being fed into
RNNs. In order to speed up training process and save
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Figure 2: Correlation matrix of the background radiation and weather
features.

computation resources in training RNNs, the time fre-
quency of radiation and weather measurements were
down-sampled from every 3 seconds to every minute.
It is valid to downsample the time frequency because
weather conditions and Poisson means of background
radiation can be assumed to be approximately constant
within one minute. This also makes our algorithm suit-
able for low-resolution measurements. Two different
datasets, the dataset A and the dataset B, were obtained
using different down-sampling procedures. The dataset
A generated each minute’s measurement by keeping the
first measurement in that minute and dropping the other
measurements. The dataset B generated each minute’s
measurement by taking the average of all the measure-
ments within that minute. The dataset A is a down-
sampled version of the raw dataset with sampling rate
0.05, while the dataset B is an averaged version of the
raw dataset. The dataset A is noisier than the dataset
B. Different RNNs were trained on the dataset A and
dataset B separately, and their performances were com-
pared in the results section.

In the preliminary test, RNNs with one hidden LSTM
layer were incapable of learning the radiation and
weather model due to their relatively simple structures,
while RNNs with three hidden LSTM layers were too
complex that they tended to overfit the data severely.
As shown in Figure 3, RNNs used in this paper had an
input layer, two hidden LSTM layers, and a fully con-
nected output layer. For the training example at time
step t, the input data contained background radiation
and weather measurements between t − TBPTT and t,

Figure 3: The RNN structure used in this paper. The input are time
series data with n time steps: (xt1, . . . , xtn). The first LSTM layer,
LS T M1, processes those n time steps data (xt1, . . . , xtn) and outputs
an intermediate result (yt1, . . . , ytn). The second LSTM layer, LS T M2,
processes (yt1, . . . , ytn) and outputs a vector with dimension of m: z =

(z1, . . . , zm). The output layer is a fully connected layer that calculates
the weighted average of z and adds a bias b.

and the output data were the predicted radiation mean
value for time step t. TBPTT was the predefined time
window parameter used in the BPTT algorithm. The
LSTM layers were constructed using the default LSTM
unit in the Keras package, which is based on the LSTM
structure presented in paper [15]. The activation func-
tion was tanh, and the recurrent activation function was
hard − sigmoid. Dropouts were used in two LSTM lay-
ers to avoid overfitting and to generalize the RNN model
[16]. To facilitate hyper parameter tuning, a random
search strategy was used to determine output dimen-
sions and dropout rates in two LSTM layers [17]. In the
random search strategy, several trials were conducted
with randomly selected hyper parameters. In each trial,
a neural network with randomly selected hyper param-
eters was trained and validated. Among those random
trials, the model with the highest validation score was
selected as the best model. Compared with traditional
methods such as manually tuning by grid search, the
random search is more efficient in hyper parameter tun-
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ing [17]. The output dimension of each LSTM layer was
uniformly sampled in [16, 64, 256, 1024], the dropout
rates were uniformly sampled in [0, 0.5], and a total of
50 trials were applied for each experiment configura-
tion. After two hidden LSTM layers, all the activations
from the second LSTM layer were fed into the output
layer. The output layer contained a single node, and no
activation function was used. The output layer calcu-
lated the weighted summation of previous layer’s acti-
vations as the output of the neural network. The loss
function L used in the training process was the mean
squared error (MSE)

L =
1
n

n∑
t=1

(yt − ŷt)2 (1)

where yt is the radiation mean value, and ŷt is the pre-
dicted radiation mean value. Additionally, the mean ab-
solute error

Errormean =
1
n

n∑
t=1

|yt − ŷt | (2)

and the maximum absolute error

Errormax = max
t
|yt − ŷt | (3)

were used for evaluation where yt is the radiation mean
value, and ŷt is the predicted radiation mean value from
either RNN or moving window method.

In the training process, the BPTT algorithm was used
to propagate the error of each layer and to update weight
matrix and activation parameters [11]. The Adam op-
timizer was used in the gradient optimization process
with recommended parameters in Kingma and Ba’s pa-
per [18]. The RNNs were trained in the stateless manner
such that memory cell states were reset between differ-
ent training examples. Computations were done using
a single Nvidia Tesla K80 GPU with the TensorFlow
package [19] as the back end and the Keras package
[20] as the front end. For the total 105 days of data,
seven days of data were used as testing data, and the
remainder were used as training/validation data.

3.2. RNNs with Radiation Data

Besides the RNNs that used both weather and radi-
ation measurements as input data, we also trained and
tested RNNs that used only radiation measurements as
input data. All other settings of these RNNs were the
same as those described in the previous section.

3.3. Moving Average Method

This study also compared the performance of RNNs
with the widely-used moving average method in radia-
tion detection field [10]. In the moving average method,
the time step t’s radiation mean value is predicted by
taking the average of previous background radiation
measurements between t and t − TBPTT . TBPTT is the
same time window used in the RNN model. No weather
information is used in this method.

4. Results and Discussion

This paper evaluated and compared three methods’
performances on the task of estimating the mean value
of current background radiation from previous radia-
tion and weather measurements. These three methods
are: RNNs with input of radiation and weather data,
RNNs with input of radiation data, and the moving aver-
age method. By comparing the moving average model
with the RNNs with input of radiation data, we evalu-
ated the effectiveness of the RNN structure in reference
to the moving average model. By comparing different
RNN models that take different input data (radiation v.s.
radiation plus weather), we evaluated the contribution
of weather measurements in predicting future radiation
values. Two specific questions were addressed in this
section: (1) how those methods performed on different
data qualities; (2) how those methods performed on dif-
ferent time windows. The first question is of interest
because in real applications data from various measure-
ment platforms are in different qualities. The second
question is of interest because the length of time win-
dows is hard to choose. A method will be preferred if
its time window length can be set easily on a wide range
of application scenarios.

Section 4.1 explains the details of different exper-
iment configurations. Section 4.2 presents an exam-
ple of background radiation prediction from the RNN
model with input of radiation and weather data, the
RNN model with input of radiation data, and the mov-
ing average model. Section 4.3 summarizes those mod-
els’ performances on different data qualities and differ-
ent lengths of time windows.

4.1. Systems and Evaluations

Several different experiment configurations were
used to test the RNNs’ performance on different data
qualities and different time windows. As discussed in
Section 3.1, the RNNs were trained and evaluated on
two different datasets: the dataset A and the dataset B.
The dataset A represented measurements with a high
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noise level, whereas the dataset B represented measure-
ments with a low noise level. For each dataset, 6 dif-
ferent time windows were tested separately: TBPTT ∈

[1min, 3min, 6min, 10min, 20min, 40min]. In total, 12
different experiment setups were tested (2 different
datasets x 6 different time windows) for three differ-
ent models. The performances of the RNNs and the
moving average method were evaluated by two met-
rics: the mean absolute error shown in Equation 2
and the maximum absolute error shown in Equation 3.
The mean absolute error represented the mean predic-
tion performance on the testing dataset, while the max-
imum absolute error represented the worst prediction
case among the testing dataset. The optimized RNN
structures for different experiment configurations were
selected through a random search procedure. Detailed
RNN configurations are listed in Appendix A.

4.2. An Example of Background Radiation Prediction

This section presents the result of background radia-
tion prediction on the time window of 6min. With this
predefined time window, the RNN model with input of
radiation and weather data, the RNN model with input
of radiation data, and the moving average model were
trained and tested with the dataset A and the dataset B.

Figure 4 shows the background radiation estimation
results of the RNN models and the moving average
method on different data qualities. All the methods
achieved a lower estimation error with the low noise
dataset than those with the high noise dataset. For both
datasets and all the methods, the maximum prediction
error occurred between time index 500 and 750, dur-
ing which a raining event happened. Table 1 summa-
rizes the performance of the two RNN methods and the
moving average method on the time window of 6 min-
utes.When the input dataset was noisy (such as Dataset
A), the RNN with radiation and weather data achieved
the lowest mean and maximum prediction error. With
noisy dataset, RNN structures showed advantages of
generating more accurate radiation predictions than the
moving average method, especially for predictions in
raining events. Besides, adding weather data into RNN
models further reduced mean and max prediction errors.
However, those advantages of RNNs didn’t hold for
low noise dataset (such as Dataset B). When the input
dataset had radiation measurements with low noise, the
moving average method achieved the lowest mean pre-
diction error, and the RNN method with radiation data
achieved the lowest maximum prediction error. This im-
plies that for a clean enough dataset (such as Dataset
B), a simple moving average operation over radiation

measurements is good enough for predicting future ra-
diations when the time window is 6 minutes. With ra-
diation data as input, the RNN model was able to com-
pete with the moving average method. With radiation
and weather data as input, the performance of the RNN
model on low noise dataset significantly dropped. This
implies that weather data brought more noise than in-
formation into the clean radiation dataset. Under this
situation, the RNN model overfitted to the training data
and performed poorly on the testing dataset. One pos-
sible solution to the overfitting issue is to collect more
data in raining events such that RNNs can learn the re-
lationship between raining and radiation better.

4.3. Background Radiation Prediction on Different
Time Windows

Figure 5 plots the mean prediction error of the RNNs
and the moving average method under different experi-
ment configurations. As expected, both RNNs and the
moving average method obtained a lower mean predic-
tion error with the low noise dataset than those using the
high noise dataset. When the time window increased,
the mean prediction errors from both the RNNs and the
moving average method first decreased and then con-
verged to a low value. This is because longer time
window contains more measurements. Prediction errors
from Poisson statistical fluctuations are suppressed by
the increased number of measurements. On the high
noise dataset, the RNNs outperformed the moving aver-
age method at all time windows, and the RNNs with ra-
diation and weather data outperformed the RNNs with
radiation data at all time windows. On the low noise
dataset, the difference in mean prediction errors be-
tween these three methods are less than 0.6 cps for all
time windows. Under the metric of mean prediction
error, the RNNs and the moving average method pre-
formed equally well on the low noise dataset.

Figure 6 shows the maximum prediction error of the
RNNs and the moving average method under different
configurations. As with the mean prediction error, both
the RNN method and the moving average method ob-
tained a lower maximum prediction error on the low
noise dataset than the high noise dataset. As the time
window increased, the maximum prediction error from
the RNNs first decreased and then converged to a low
level. However, the moving averaged method’s maxi-
mum prediction error first decreased and then increased
as the time window increased. This is because the max-
imum prediction error occurred in precipitations. As
shown in Figure 1, background radiation would first in-
crease and then decrease during the period of precipita-
tion. The moving average method would under estimate
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Table 1: Prediction performance for the RNN with radiation and weather data (RNN(r,w)), the RNN with radiation data (RNN(r)), and the moving
average method (MA) when the time window is 6 minutes. Error unit is count per second (cps).

Prediction Error
High noise Low noise

RNN(r, w) RNN(r) MA RNN(r, w) RNN(r) MA
Mean error 3.85 4.98 5.49 1.55 1.42 1.28

Maximum error 20.71 22.08 43.41 17.06 8.41 8.47

Figure 4: Performance of Background radiation estimation from the RNN methods and the moving average method. Plots in the first column use
the high noise dataset. Plots in the second column use the low noise dataset. Plots in the first row ( (a.1) and (a.2) ) use the RNN method with
input of radiation and weather data. Plots in the second row ( (b.1) and (b.2) ) use the RNN method with input of radiation data. Plots in the third
row ( (c.1) and (c.2) ) use the moving average method. In each plot, the top subplot illustrates the true value and the predicted value of background
radiation, and the bottom subplot illustrates the absolute prediction error.

the background radiation at the beginning of the precip-
itation and over estimate the background radiation in the
end of the precipitation. The longer the time window is,
the more severe under/over estimation will be. It is diffi-
cult for the moving average method to set the time win-

dow length to make a trade off between Poisson errors
and the under/over estimation errors. In contrast, the
RNNs performed equally well for time windows longer
than 10min. It is because RNN models are able to learn
the nonlinear behavior of background radiation fluctua-
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Figure 5: Mean absolute prediction error of RNNs and the moving av-
erage method under different experiment configurations. Red lines in-
dicate models trained and tested on the high noise dataset, while black
lines indicate models trained and tested on the low noise dataset. For
the high noise dataset, the RNNs with radiation and weather data per-
formed the best at all time windows. For the low noise dataset, these
three models performed equally well in terms of the mean absolute
prediction error.

Figure 6: Maximum absolute prediction error of RNNs and the mov-
ing average method under different experiment configurations. Red
lines indicate models trained and tested on the high noise dataset,
while black lines indicate models trained and tested on the low noise
dataset. As time window increased, the maximum prediction errors
from RNN models decreased and converged to a low level, but max-
imum prediction errors from the moving average method firstly de-
creased and then increased again.

tion during precipitations, and the under/over estimation
doesn’t occur in RNN models.

5. Conclusions

This paper studied the problem of background radia-
tion prediction with RNNs. A measurement platform
containing a weather station and a radiation detector
was set up. RNNs were trained to predict mean radia-
tion values using past background radiation and weather
measurements. With the high noise dataset, the RNN
method with radiation data performed better than the
moving average method in the radiation prediction task,
and weather data further improved the prediction accu-
racy of RNN models at all time windows. With the low
noise dataset, the RNN method with radiation data per-
formed as good as the moving average method at their
optimized time window. Adding weather data into the
RNN models caused them to overfit to the training data.
In the future, more radiation and weather data will be
acquired to correct the overfitting issue. Additionally,
for both high noise dataset and low noise dataset, the
RNN methods showed better and more stable perfor-
mance when the window size increased, which had the
advantage in real application to facilitate the choice of
window size parameter.
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Appendix A. RNN structures selected by the ran-
dom search algorithm.

The L1 (or L2) column denotes the output dimensions
in the first (or second) LSTM layer. The Dp1 (or Dp2)
column denotes the dropout rate for the first (or second)
LSTM layer.

Table A.1: RNNs with radiation and weather data as input

Dataset TBPTT L1 Dp1 L2 Dp2

Dataset A
1 1024 0 64 0
3 256 0 16 0.5
6 256 0 256 0.5

(high noise)
10 256 0 256 0.5
20 1024 0 16 0
40 256 0 256 0.5

Dataset B
1 256 0 1024 0
3 256 0 256 0.5
6 64 0 16 0

(low noise)
10 1024 0 256 0
20 256 0 256 0.5
40 1024 0 64 0.5

Table A.2: RNNs with radiation data as input

Dataset TBPTT L1 Dp1 L2 Dp2

Dataset A
1 64 0 256 0
3 1024 0 16 0
6 1024 0 256 0.5

(high noise)
10 64 0 1024 0.5
20 1024 0 64 0
40 256 0 64 0

Dataset B
1 256 0 256 0
3 256 0 1024 0
6 1024 0 64 0

(low noise)
10 1024 0 256 0.5
20 1024 0 64 0
40 256 0 1024 0.5
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