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ERM framework for clustering

Basic definitions:

• Data space X ∈ Rn endowed with probability measure P ∈ P

• A Sample S = {x1, x2, ..., xm} is drawn i.i.d from (Xm,Pm)
• A clustering C of set X is a finite partition C : X→ N, and a
specific data cluster is defined as ci := {x ∈ X; C(x) = i}. C
belongs to a family of clusterings C.

• A clustering distance is a mapping d : P× C × C → [0, 1]. It has
the following properties: ∀P ∈ P and ∀Ca, Cb, Cc ∈ C

1. dP(Ca, Ca) = 0
2. dP(Ca, Cb) = dP(Cb, Ca)
3. dP(Ca, Cb) ≤ dP(Ca, Cc) + dP(Cc, Cb)
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ERM framework for clustering

Basic definitions (continued):

• A clustering algorithm A is a mapping A : Xm → C, m ∈ N

• The instability of algorithm A for sample size m with respect to
the probability distribution P is :

instab(A,P,m) := ES1,S2∈PmdP(A(S1),A(S2)) (1)

Further, the instability under infinite large dataset is defined as

instab(A,P) := lim
m→∞

instab(A,P,m). (2)

• The risk of clustering C is R(P, C) : P× C → R+
0 .

• The optimized risk is R∗P := infC∈CR(P, C)
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ERM framework for clustering

Why do we need to measure the stability of a clustering algorithm?

• Model selection: Find the optimized cluster number k.
• Connection between stability and generalization(Shamir and
Tishby, 2008).
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ERM framework for clustering

Emperical Risk Minimization Scheme
Given (X, C,P,R), the clustering algorithm aims to find C ∈ C that
minimize the risk R(P,C).

• Example: k-means algorithm. It aims to minimize the following
risk:

R(P, C) = EP min
1≤i≤k

||x− ai||22

where (a1, ...,ak) are the centers of k clusters.
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ERM framework for clustering

Emperical risk
For a sample S ⊆ X, the empirical risk of clustering C is R(PS, C). Here
the PS is the empirical probability distribution of S.

R-minimizing
A clustering algorithm is called R-minimizing if R(PS,A(S)) = R∗PS
Risk Convergence
The R-minimizing algorithm is called risk converging if ∀ϵ > 0 and
∀δ ∈ (0, 1), ∃m0 ∈ N such that ∀m ≥ m0, S = {x1, x2, ..., xm} ∈ Pm

Pr {R(P,A(S)) < R∗P + ϵ} > 1− δ (3)
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ERM framework for clustering

Unique minimizer
A probability distribution P is said to have a unique minimizer C∗ if
∀η > 0, ∃ϵ > 0 such that

R(P, C) < R∗P + ϵ ⇒ dp(C∗, C) < η (4)

Several distinct minimizers
A probability distribution P is said to have n distinct minimizers
{C∗1 , ...C∗n} if ∀η > 0, ∃ϵ > 0, and ∃1 ≤ i ≤ n such that

R(P, C) < R∗ + ϵ ⇒ dp(C∗i , C) < η (5)
and ∀i ̸= j,dP(C∗i , C∗j ) > 0 (6)
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Unique minimizer under infinite large dataset

Theorem 1
If P has unique minimizer C∗, any risk convergence algorithm is
stable on P under infinite large dataset.

Proof of Thm 1 (Ben-David and Luxburg, 2006)
Given (X, C,P,R), a risk convergence algorithm A, and a large enough
dataset with size m, the goal is to show

instab(A,P,m) < ζ, ∀ζ > 0 (7)
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Unique minimizer under infinite large dataset

Proof of Thm 1 (continued)
Firstly pick δ ∈ (0, 1) and η > 0 such that 2(δ + η) < ζ . Because A has
unique minimizer C∗, there ∃ϵ > 0 such that

R(P, C) < R∗P + ϵ ⇒ dp(C∗, C) < η (8)

Because A is risk converging, there ∃m0 such that ∀m > m0,

Pr {R(P,A(S)) ≥ R∗P + ϵ} < δ (9)

Combining (8) and (9), we have:

Pr {dp(C∗,A(S)) ≥ η} ≤ Pr {R(P,A(S)) ≥ R∗P + ϵ} < δ (10)
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Unique minimizer under infinite large dataset

Proof of Thm 1 (continued)
Finally we have

instab(A,P,m)

= E
S1,S2∼Pm

dP(A(S1),A(S2))

≤ E
S1,S2∼Pm

[dP(A(S1), C∗) + dP(A(S2), C∗)]

= 2 E
S∼Pm

dP(A(S), C∗)

≤ 2(η · Pr
S∼Pm

(dP(A(S), C∗) < η) + 1 · Pr
S∼Pm

(dP(A(S), C∗) > η)

≤ 2(η + Pr
S∼Pm

(dP(A(S), C∗) > η))

≤ 2(η + δ)

< ζ

10



n distinct minimizers under infinite large dataset

Theorem 2
If P has n distinct minimizers (for example, due to the symmetry of
P), any risk convergence algorithm is instable on P under infinite
large dataset.

The detailed proof is in reference(Ben-David and Luxburg, 2006).
Intuitively, if P has multiple minimizers, the ERM scheme will
”randomly” converge to one of the minimizers.
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Empirical estimator

Empirical estimator of instab(A,P)
Given (X, C,P,R), we i.i.d sampled (2m+1)n data points from
distribution P and split them equally into 2m+1 sets {S1, S2, ..., S2m+1}
with n points in each set. The first 2m datasets were used to train
clusterings {C1, ..., C2m},and the last dataset was used to calculate
the distance between clusterings:

d(C, C′) = min
π

1
n

∑
i:xi∈S2m+1

1{C(xi) ̸=π(C′(xi))} (11)

The minimum above is taken over all possible permutations π of the
clusters. The empirical estimator of instab(A,P) is defined as

̂instab(A,P)m =
1
m

m∑
i=1

d(A(S2i−1),A(S2i)) (12)
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Examples: K-means algorithm, k=2

Example one: stable Example two: instable
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Conclusion and further discussions

Conclusion

• Represented clustering algorithms in an ERM scheme.
• The idealized risk convergence algorithm is stable if there has
unique global minimizer.

• The idealized risk convergence algorithm is not stable if there
are multiple global minimizers.

• The stability of an algorithm should not be used to select
models.

Further discussions
For idealized risk convergence algorithm with finite samples, the
convergence speed of the empirical instability can be used to select
models(Shamir and Tishby, 2009).
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